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SUMMARY

Using global interpolation functions (GIFs). boundary element solutions are
obtained for two-dimensional laminar flows. Two schemes are proposed for
handling the convective terms. The first treats convection as a forcing func-
tion. and converts the flow equations to pseudo-Poisson equations. In the
second scheme. some convective effect is incorporated into the fundamental
solution used in constructing the pertinent integral equations. The lid-driven
cavity flow is selected as the benchmark problem.

INTRODUCTION

The boundary element method (BEM) has traditionally been applied to prob-
lems governed by linear differential equations. At the core of the basic BEM
computational process is the fundamental solution (also referred to as the
free-space Green's function) defined as the impulse response of the governing
equation to a unit action. This fundamental solution is either too difficult
or impossible to derive for practical nonlinear problems. Recently. with the
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introduction of the so-called Dual Reciprocity techniques (see e.g., Nardini
& Brebbia [1982]: Brebbia ct al.. [1991): Partridge et al.. [1992]): Cheng et
al.. [1993]: Lafe [1993]: Lafe & Cheng [1994]). the method is being proposed
for certain classes of nonlinear problems.

Using the Dual Reciprocity approach. a given problem is typically decom-
posed into two parts - the linear and nonlinear portions. The solution to the
linear portion is represented by a boundary integral whose kernel consists
of the fundamental solution to the linear governing equation. The nonlin-
ear part is represented by either 1) local bases functions (Brebbia et al.,
[1991]): or 2) global interpolation functions (GIFS) (Lafe [1993]). In either
case. the boundary integral expressions and interpolation functions contain
coefficients whose values are to be determined by enforcing the boundary
conditions. When the “direct BEM™ approach is followed the unknown coef-
ficients are in essence the unknown physical variables (velocity components,
pressure. temperature) of the problem. On the other hand. using the “indi-
rect BEM™ approach. the unknown are the weights/strengths of the boundary
sources/dipoles and the local/global interpolating functions. The computa-
tional intensity of the indirect approach is much less than for the direct.

In this paper. we develop a GIF-based indirect BEM code for two- di-
mensional steady-state incompressible Navier-Stokes equation. Test results
are shown for the lid-driven cavity problem.

GOVERNING EQUATIONS

The governing equations are:

du  Ov
=2 1
or + dy 0 (1)
du du Vap (v 9u
guw. o _ 19 KoM OJU 9
dv o Lap  p [P 0%
St = Ty (d— t o 3)

where (u.r) are the velocity components in the r and y directions respec-
tivelv. p is the pressure. p is the density. and g is the viscosity. Let

X = /L
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= y/L
u/T
= ¢/t
P = p/ (/7?2)

With these the governing eqnations become:
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where the Revnold's Number R. = ptL/p.

BOUNDARY INTEGRAL EQUATIONS

In order to convert the above into boundary integral equations two ap-
proaches have heen followed. In the first approach. the entire system of equa-
tions is converted into an elliptic svstem. with the convective term wholly
embedded in the right-hand-side forcing function. There is concern about
the suitability of the elliptic system to adequately represent the convective
forces at moderate to high Revnold™s number regimes. The second approach
rectifies this through a more direct perturbation-based analvsis which 1s more

suited to capturing convective eflects as the Revnold’s number increases.

Approach I

The above equations are converted into an elliptic svstem:

Vi = R (7)
v o= F (8)
VP o= B (9)

where

ol Lot " or
7AN Yy IgX

= R (1'——+\
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a9V 9P
F, = AN AN |
» = ke ( ax PVoy Tt m") (10)

P .)(a(.'m' f)l'i)\')
3 = 2

Boundary Integral Equations

The associated indirect boundary integral equations are:
U(xX.y) = /r Wi (XY )g( XY X Y)Y dT + Z JuU(X. YY) (11)
“.
F(X.Y) = /r W XY Yg(XN Y XY dT + Z SV X.Y) (12)
: .
P(X.Y) = /r wa( XY )g(X Y XY ) dT + 3 e 0u(X.Y) (13)
: P
in which
g=1n [(.\" - X4+ (Y - )")2]
Y S MUX.Y) = F(XLY) (14)
k

VAL(X.Y) = M (L Y)

The functions M (.X.Y") are the interpolation functions used in represent-
ing the convective terms. If we choose

M, = cos(mp X)cos(,Y) (15)
it is easily shown (Lafe [1993]) that

cos(m . X )cos(ni YY)

U = : :
* (ni + mj)

(16)

Approach 11

"Our aim here is to have a better incorporation of the convective effects in
the driving differential operator. Let

[,' = [-U+1-1
V= 141
P = P0+P1
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where ({ . V5. Py) denote solutions to a convection-free flow field. while (U, Vi, Py)

represent the convective effects. Hence

‘_'2('0 = 0
T, o= 0
Mooty Il oV,
-2 _ o |%Z0% Podlo
Vb oX 9Y 9y OX
while
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The external boundary conditions are imposed on ({ p. Vo. Fy). Therefore the
variables ({ 7. 1. P;) are allowed to enjoy homogencous boundary conditions.
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Boundary Integral Equations

The velocity components ({'y.Vy). which are governed by Laplace's equa-
tions. can be represented by ‘pure’ boundary integral equation using the
fundamental solution for potential flow. However the pressure term, because
of the non-zero forcing function. will include glohal interpolation functions.

Therefore. the indirect boundary integral equations for the convection-
free variables are:

lo(X.Y) = /r wor (X', Y")g( X' Y X.Y') dT (23)
TH(X.Y) = /r wor( X" Y )g(X'. ¥ X.Y') dT (24)

Po(X.Y) = /I_11'03(4\’1.)"")g(.\".)”: X)) rlI“+ZJ0k\IIk(.\'. Y) (25)
k

where (wgy. wo,. wy3) are fictitious sources while ¥, are the GIFS.

The convective effects ({7,.13. P,) are represented by GIFS. For flows in
simple geometries it is possible to select GIFS which automatically satisfy
the required homogeneous boundary conditions.

Hence
((X.Y) = ;;mwk(_\'.y') (26)
H(X.Y) = ';,.a.zk\pk(_\'.)') (27)
A(X.Y) = ;@.wk(_\'.r) (28)

in which (34, 35, 331) are the pertinent coefficients for the GIFS. These
parameters are calculated by enforcing

1. Equations (20-22) at selected collocation points within the flow region
and

2. Homogencous conditions at selected boundary points.

The chief advantage of the first approach is the simplicity and size of
the global coefficient matrices. derived from the Laplace equation solver.
This translates into a compact. fast. and highly efficient numerical imple-
mentation. The drawback is its iterative character since the forcing function
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depends on the solution being sought. C‘onvergence is difficult to achieve for
large Revnold's number hecause the governing elliptic svstem becomes singu-
lar. and cannot adequately represent the underlyving physics of the problem.
The second approach. which in essence separates the convection-free flow
from the main flow. allows for a more direct representation of the asymptotic
limits of the Revnold's number. Furthermore. by products of higher-order
terms (i.¢.. setting hl = h2 = h3 = 0. the solutions can be obtained without
iteration. However. the coefficient matrix is larger and the approach involves
a greater level of computational intensity.

NUMERICAL IMPLEMENTATION
Approach I

We subdivide the boundary into n, elements. Let Np(x) (A = 1,2,---my)
represent the bases functions describing the distribution of w on I'. In the
examples being reported in this paper. constaut bases functions are being
used for the fictitious strengths w; on the houndary. By selecting each of the
ny boundary points as successive origins ol integration. the pertinent integral
equations can be assembled into the svsten:

ny
Z apwr=b; 1 =1.2.--.n, (29)
k=1
where
C\ax! '.x,) dx’' ;
i Jr XexXg(xt ) dxt o oxi € Te (30)
Jr, Nu(x)0g/on(X'.x,) dx" x; € Tq
h = (D(xl’ - Zyi] .}[\DI/ X; € rd> (31)
T ()@/()n(x,) - Zy;l .f‘l‘(')\p,'.l'/(')ll X; € FQ
where ® = (I.1.P). Therefore. we have n, equations to determine wy
(k= 1.2.---n). Svmbolically equation (29) can be written in the alternative
form:
AW =B (32)
which can be inverted to give:
W=A"'B (33)
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The whole process boils down to the iterative solution of equations (14)
and (33), with repeated updating of F using (10). The iterative steps are:

1. Start with a trial F (i.e.. F, values for + = 1.2.---ny).
2. Obtain .3 from equation (14).
3. Obtain W using equation (33).

4. Use discretized forms of the appropriate integral equations to compute
®. V& at all n,y points. This provides a better estimate for F.

5. Go back to Step 2 if convergence condition is still unsatisfied.

Note that the matrix inversions in equations (14) and (33) need only be per-
formed once. for fixed boundary problems. The vectors W and 3 are the
quantities whose values change during the iterative process. Once conver-
gence is reached. the discretized integral equations can be used routinely to
obtain ® = (1. P) or the gradient at anv point (x) of interest.

Approach II

The numerical implementation for the convection-[ree quantities (Uy, Vo, Po)
is similar to the one followed in Approach I. with the coefficients for the GIFS
set to zero for the velocities. No iteration is required.
The convective-flow quantities are calculated through the coefficients (34, B2k Fai)
whose values are obtained by solving the following coefficient matrices:

nr nr nr
.'g”.fll,';‘. + Z ~31}.~42ik + Z .f”..—‘;;,;‘. = F],’ t=1.2.--- ny (34)
k=1 k=1 k=1
nr nr nr
B+ Y 3uBak + . wBay = Fy i=12,--ng (35)
k=1 k=1 k=1
nr nr _ nr
I Crin + Z 33k Coir + Z InCa = Fa i=1.2.---ng (36)
k=1 k=1 k=1
nr
jlkh‘l./k =10 ‘/‘ =1.2.--- ny, (37)
k=1
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T
S duwEy =0 j=12.m, (38)
k=1
nr
ks =0 j=1.2.---m (39)
k=1
where (if the higher order terms are neglected)
I —, ) IV, . JW, al’y
A0 = - AX;) — ,—,‘,—‘ D) (X)) — =YX
11k R, VW, (x,) — [ u(x )(.)‘\. (x,) ol X)) BT (x/) ox U i(x;)
()( 0
."),~ = X; |
2k 0y —— (X)W (x)
()\I/A
-"‘:’»1/; - —W(xl
()‘0
B = ()\( X )W (x;)
1 ) IV, . IOV, JV
By = Y?—V"I’L-(X,‘) -1 o(X;)TJK.‘-(X,') - \(»(X..)ETA(XI') - 0_}?‘1’&()\1)
O\IIL
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y _ ()‘O (}\IlL AP 0 ()\I/L
Cyp = —(X; ))\( )+)\(X))).(X‘)
. _ ()( 0 ()‘I’L ol 0, v, )
(‘_’tk - (j\( ) ))(xl)+ ())-(Xl)()‘\(xlj
. |
Csie = ;V‘\Dk(x')
; a7y )(
o= D+
F h(X j\(X)+ ol X; )) )\
- . ) 0 . ()‘0 f)Ry
AN N0 el ol Loy
1.,: U(xl)i)‘x-(xl)+‘O(XI)(.}}-(XI)+ (,)).()\1)
F.";i =0
Eg_,;; = lI’;\.(X.,) if X, € I'd,,
AV »
Eg_,';,. = on (X‘,') i X; € Fq,

In the above & = (I V. P): Q = (9 [on. OV /. dP[dn)

and x, = (X.Y") for 2D flows.
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TEST RESULTS

We examined the lid-driven cavity flow problem depicted in Fig. 1. A unit
horizontal velocity is imposed on the lid (at Y = I). while the no-slip bound-
ary condition {" = V7 = 0 is imposed on all solid walls. The boundary
condition for the pressure on all walls is (Fletcher [1991]):

oP 1 0 ((’)(' (")V)

on R, Os

ay oX

A typical convergence profile. using Approach L. is shown (R, = 15) in Fig.
2. The horizontal velocity at the vertical center-line is shown in Fig. 3.
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CONCLUSIONS

A boundary element code. based on the use of global interpolation func-
tions. for solving the Navier Stokes equations have been proposed in this
paper. The avoidance of any domain integration shows the enormous power
of the technique. As long as the underlving physics of the problem is ade-
quately represented in the fundamental solutions used as the kernel of the in-
tegral equations. accurate simulations can be carried out for moderate to high
Reynold’s number flows. Only trigonometric hases have heen used to repre-
sent the nonlinear convective terms. Investigations are currently underway
for emploving other bases including those derived from orthogonal functions
such Chebvchev polynomials. wavelets. and cellular automata transforms.
Three-dimensional GIF-based BEM code for internal flows are also being
developed.
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Figure 3: Horizontal Velocity at Vertical Center-Line
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